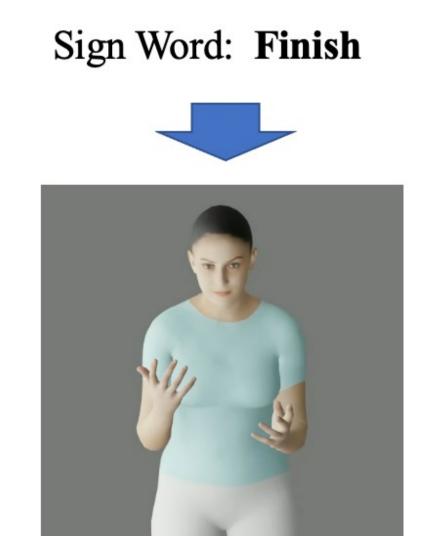


Word-Conditioned 3D American Sign Language Motion Generation

Lu Dong, Xiao Wang, Ifeoma Nwogu

Motivation

- > Sign words are the building blocks of any sign language.
- Most continuous sign language generation/production are limited to closed-set and struggle with unseen words or phrases. However, we observe that new American Sign Language (ASL) signers can construct a wide range of signs using a fixed set of sign words. This highlights the importance of sign-word synthesis.
- ➤ We present wSignGen, a word-conditioned 3D American Sign Language generation model, dedicated to synthesizing realistic and grammatically accurate motion sequence for sign words.



Project Page

wSignGen Overview

> Problem Formulation:

Our goal is to generate 3D SMPLX-based motion sequences that match the meanings of sign language words, based on either input words or images.

> Conditioned Word or Image

Diffusion Process

> Training losses

$$\mathcal{L}_{base} = \mathbf{E}_{X_0 \sim q(X_0|c), t \in [1, t]} \left[\|X_0 - G_c(X_t, t)\|_2^2 \right]$$

$$\mathcal{L}_{vel} = \frac{1}{N-1} \sum_{i=1}^{N-1} \left\| (x_0^{i+1} - x_0^i) - (\hat{x}_0^{i+1} - \hat{x}_0^i) \right\|_2^2$$

$$\mathcal{L} = \mathcal{L}_{base} + \mathcal{L}_{vel}$$

Input Walk Or Noisy Motion Transformer X 8 Clean Motion Clean Motion

> Sampling

- > wSignGen not only performs word-conditioned generation but also offers two key advantages:
 - > Image-based generation, which is especially useful for children learning sign language who may not yet be able to read.
 - > The ability to generalize to unseen synonyms, allowing for more flexible and comprehensive sign language synthesis.

Experiments

> Dataset:

- ➤ We curated a 3D SMPLX-based dataset from the sign recognition video dataset WLASL.
- ➤ Top 30 words denoted as ASL3D_S for our scalability evaluation.
- Next, we used the Hand4whole model to extract SMPLX features, creating our SMPLX-based ASL3D Dataset.

> Quantitative Results

Table 1: Comparison of CVAE Baseline and our Diffusion Model We compare a motion generation baseline algorithm with our proposed method using the curated datasets. Notation Keys: \rightarrow : implies that motions are better when the metric is closer to those computed for GT^{train} and GT^{test} ; "Acc.": accuracy; "Div.": diversity; "Mul.": multimodality; "Gen": Generation. Gen^{train} and Gen^{test} are generated from the same model, and we report them separately to compare with the original training and testing data distribution on FID, Div., and Mul. metrics.

$\mathbf{ASL3D}_S$	Acc. ↑	FID ↓	$\textbf{Div.}{\rightarrow}$	$\mathbf{Mul.}{\rightarrow}$	ASL3D	Acc.↑	FID↓	$\mathbf{Div.}{\rightarrow}$	Mul. ightarrow
Original Data (no Generative Process)									
GT^{train}	1.0	-	30.001	9.921	GT^{train}	1.0	-	34.565	13.256
GT^{test}	0.897	-	26.252	11.180	GT^{test}	0.765	-	30.599	12.289
CVAE Baseline (ACTOR ⁺)									
Gentrain	0.884	75.243	24.566	8.250	Gentrain	0.515	126.830	25.732	16.500
Gen ^{test}	-	65.285	24.187	6.600	Gen ^{test}	-	100.147	25.393	12.289
wSignGen (Our Model)									
Gen ^{train}	1.0	5.348	29.592	8.855	Gen ^{train}	1.0	7.339	33.927	11.417
Gentest	-	40.834	29.278	6.494	Gentest	-	37.873	33.608	8.538

> Human Evaluation Results

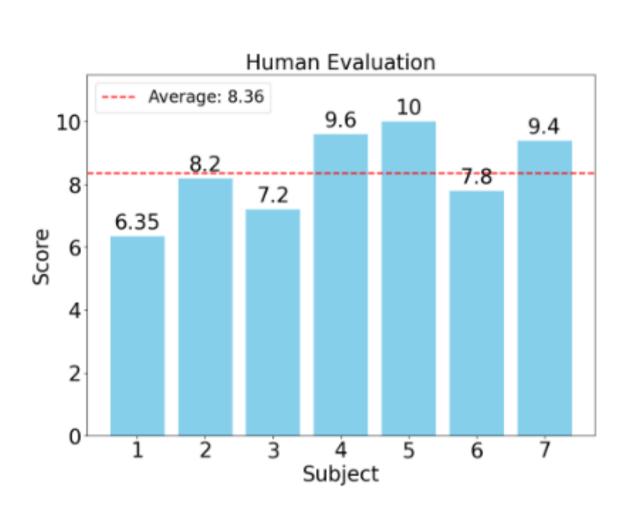


Figure 3: Human Evaluation Results

> Evaluation Metrics:

- > Recognition Accuracy (Acc.)
- Fréchet Inception Distance (FID)
- Variation of motion across all words (Div.)
- > Per-word motion variation (Mul.)

> Qualitative Results

> Future Work:

- ➤ Larger Available Dataset
- Detailed Facial Expression
- > Open-domain Generation