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Motivation

» Sign words are the building blocks of any sign language.

» Most continuous sign language generation/production are limited to
closed-set and struggle with unseen words or phrases. However, we
observe that new American Sign Language (ASL) signers can construct a
wide range of signs using a fixed set of sign words. This highlights the
importance of sign-word synthesis.

» We present wSignGen, a word-conditioned 3D American Sign Language
generation model, dedicated to synthesizing realistic and grammatically
accurate motion sequence for sign words.
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wsSignGen Overview
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» Sampling

» wSignGen not only performs word-conditioned generation but also offers two key advantages:
» Image-based generation, which 1s especially useful for children learning sign language who may not yet be able to read.
» The ability to generalize to unseen synonyms, allowing for more flexible and comprehensive sign language synthesis.

Experiments

> Dataset:

» We curated a 3D SMPLX-based
dataset from the sign recognition

» Quantitative Results > Human Evaluation Results

Table 1: Comparison of CVAE Baseline and our Diffusion Model We compare a motion generation baseline :
Human Evaluation

algorithm with our proposed method using the curated datasets. Notation Keys: —: implies that motions are better
. when the metric is closer to those computed for GT?"%" and GT!**%; "Acc.": accuracy; "Div.": diversity; "Mul.": ~=- _fwerage: 9.96 96 10
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train train
GT**® 0.897 26.252 | 11.180 GTtest 0.765 30.599 | 12.289
model to extract SMPLX features, CVAE Baseline (ACTOR™) ,
. Gen'r®m | (0.884 | 75.243 | 24.566 | 8.250 | Gen®™®" | 0.515 | 126.830 | 25.732 | 16.500
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’ Gen'mam 1.0 5.348 | 29.592 | 8.855 Gen'" " 1.0 7.339 | 33.927 | 11.417
Gentest - 40.834 | 29.278 | 6.494 Genlest - 37.873 | 33.608 | 8.538 Figure 3: Human Evaluation Results

» Evaluation Metrics: » Qualitative Results

» Recognition Accuracy (Acc.)
» Fréchet Inception Distance (FID)
» Variation of motion across all

words (Di1v.)
» Per-word motion variation (Mul.)

» Future Work:
» Larger Available Dataset
» Detailed Facial Expression
» Open-domain Generation
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