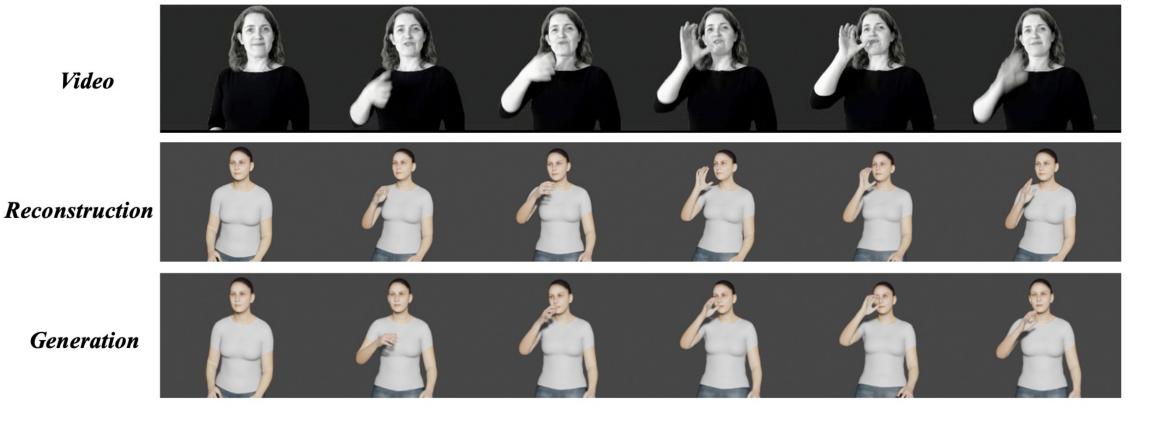


The State University of New York

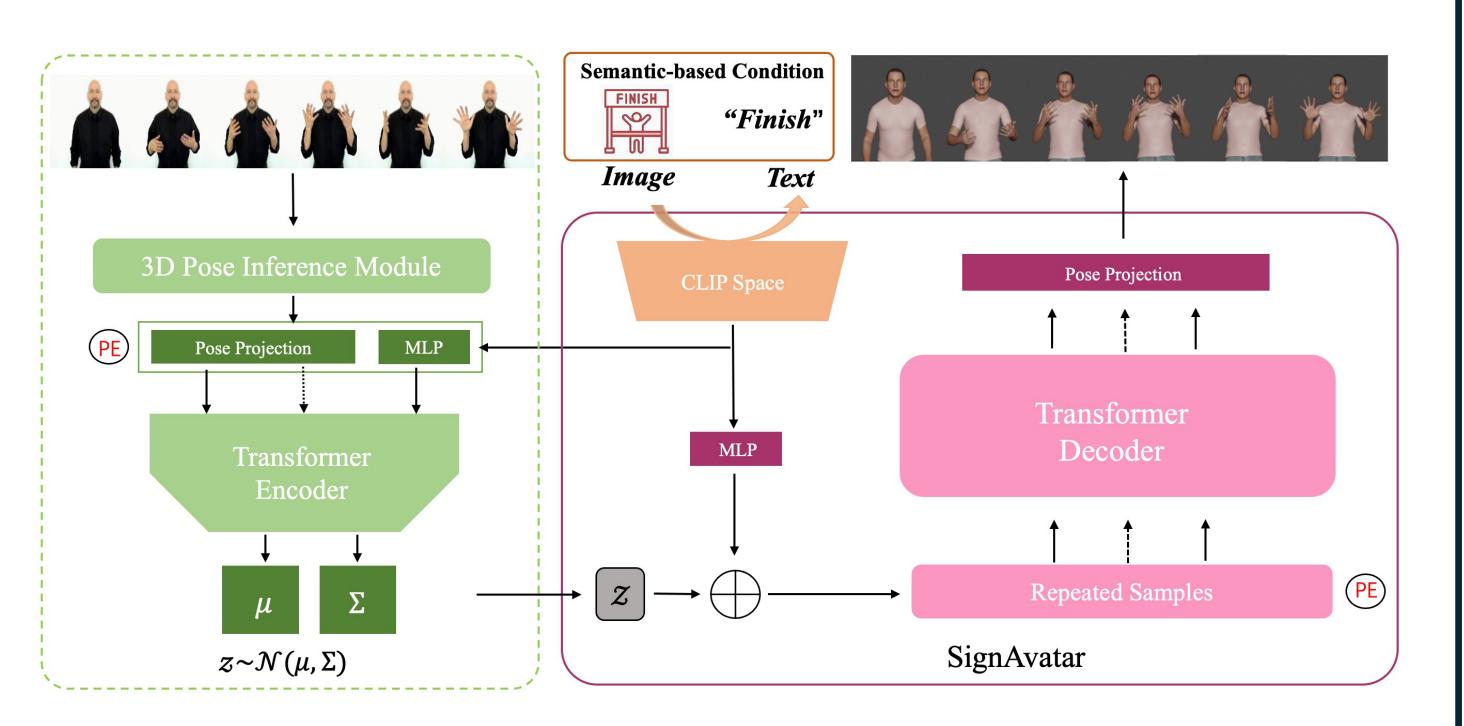

SignAvatar: Sign Language 3D Motion **Reconstruction and Generation**

Motivation

- **Background:** Achieving expressive 3D motion reconstruction and automatic generation for isolated sign words involves three main challenges:
 - Lack of 3D sign-word data.
 - Complex nuances of signing motions.
 - Cross-modal understanding of sign language semantics.
- **Solution:** Introduce a framework, SignAvatar, that is capable of
- Incorporates a curriculum learning strategy to enhance robustness.
- Contributes the ASL3DWord dataset and evaluates the proposed framework through extensive experiments.

both word-level sign language reconstruction and generation.

Utilizes a transformer-based Conditional Variational Autoencoder (CVAE) architecture, leveraging Contrastive Language-Image Pretraining (CLIP) for conditioning.

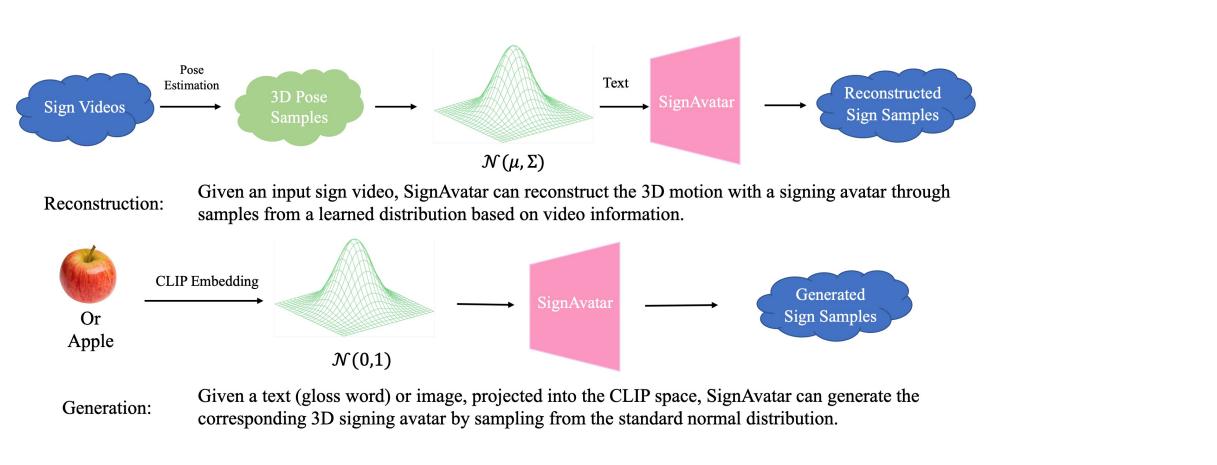

Semantic: drink

SignAvatar Overview

Problem Formulation: Given the input video frames, we reconstruct 3D motion, $M_n = [p_1, ..., p_T]$, Meanwhile, given a label Y or an image reflecting that label, we generate the corresponding motion M_n .

Conditional VAE with CLIP latent space

- Encoder: The CVAE encoder takes the pose sequence and word-level text projections as input, using a transformer architecture to calculate Gaussian distribution parameters, μ and Σ .
- \blacktriangleright **Decoder:** Given a latent vector z, with a conditional bias that integrate categorical information, the decoder generates pose sequence in the SMPL-X parameter format.



> Learning Objectives

$$\mathcal{L}_{ ext{rec}} = rac{1}{T} \sum_{t=1}^{T} \left\| oldsymbol{p}_t - \hat{oldsymbol{p}}_t
ight\|_2^2 \qquad \qquad \mathcal{L}_{ ext{CVAE}} = \mathcal{L}_{ ext{rec}} + \omega_{ ext{KL}} \mathcal{L}_{ ext{KL}}$$

Curriculum Learning Strategy: This work employs a curriculum learning strategy by progressively increasing the mask ratio during training through g(ep).

 $g(ep) = min\left\{0.1 * \left|\frac{ep}{500}\right|, 0.6\right\}, ep \in [0, 5000)$

Experiments

- Dataset: To quantitatively evaluate the > Quantitative Results performance of SignAvatar, we constructed the ASL3DWord dataset from the WLASL video dataset. However, the distribution of videos for each word is unbalanced and contains a considerable number of noisy samples.
 - Quality Control
 - Pose Feature Extraction

TABLE I: Quantitative results comparison on Raw Poses (Raw), Reconstructed Poses (Rec), and Generated Poses (Gen). \rightarrow indicates results are better if they are closer to the extracted Raw pose.

ASL3DWord Subset	Acc. ↑	FID ↓	Div. \rightarrow	Multi. \rightarrow	ASL3DWord	Acc.↑	FID↓	Div. \rightarrow	Multi. \rightarrow
Raw_{train}	1.0	0	30.001	9.921	Raw_{train}	1.0	0	34.565	13.256
Raw_{test}	0.897	0	26.252	11.180	Raw_{test}	0.818	0	30.599	12.289
w/o Curriculum Learning					w/o Curriculum Learning				
Rec_{train}	1.0	4.566	28.981	10.160	Rec_{train}	1.0	3.395	33.566	13.803
Rec_{test}	0.962	32.583	29.495	9.095	Rec_{test}	0.906	29.184	31.356	10.249
Gen_{train}	0.884	75.243	24.566	8.250	Gen_{train}	0.515	126.830	25.732	16.500
Gen_{test}	0.890	65.285	24.187	6.600	Gen_{test}	0.5111	100.147	25.393	12.289
w/ Curriculum Learning					w/ Curriculum Learning				
Rec_{train}	0.997	7.195	29.340	9.993	Rec_{train}	0.999	6.112	33.583	13.347
Rec_{test}	0.976	32.973	29.165	7.362	Rec_{test}	0.952	40.637	32.561	8.486
Gen_{train}	0.946	44.469	27.115	7.160	Gen_{train}	0.729	85.025	27.973	14.700
Gen_{test}	0.941	46.435	27.097	5.916	Gen_{test}	0.733	71.809	27.811	10.483

TABLE II: Ablation Study for Quality Control

Data	w/o Qua	ality Control	w/ Quality Control			
ASL3DWord Subset	Acc. ↑	FID \downarrow	Acc. ↑	$\mathbf{FID}\downarrow$		
Raw_{train}	1.0	0	1.0	0		
Raw_{test}	0.790	0	0.897	0		
Rec_{train}	0.927	27.319	0.997	7.195		
Rec_{test}	0.851	51.846	0.976	32.973		
Gen_{train}	0.856	70.250	0.946	44.469		
Gen_{test}	0.860	75.515	0.941	46.435		

> Evaluation Metrics:

- Recognition Accuracy (Acc.)
- Fréchet Inception Distance (FID)
- Diversity (Div.)

 $Diversity = rac{1}{S_{d}}\sum_{i=1}^{D_{d}}\left\|m_{i}-m_{i}^{'}
ight\|_{2}$

Multimoldality (Multi.)

$$Multimodality = rac{1}{C imes S_{l}} \sum_{c=1}^{C} \sum_{i=1}^{S_{l}} \left\| m_{c,i} - m_{c,i}^{'}
ight\|_{2}$$

Quality Control

Qualitative Results

